

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Fig's Profile

Registered name	Sex
Figo V. Zaxhaus	M
Owner reported breed	Date of birth
Boxer	2020-05-29

Microchip number 688038000200949

Genetic Diversity

Fig's Percentage of Heterozygosity 25%

Health summary

• Degenerative Myelopathy

Clear 212 conditions

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Genetic Diversity

Heterozygosity

Fig's Percentage of Heterozygosity

25%

Fig's genome analysis shows an average level of genetic heterozygosity when compared with other Boxers.

Typical Range for Boxers

21% - 32%

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Health conditions known in the breed

	Gene	Risk Variant	Copies	Inheritance	Result
Degenerative Myelopathy	SOD1	G>A	1	AR	Carrier

✤ Information about the genetic condition

The onset of DM is usually in a dog's senior years. Affected dogs first begin by exhibiting muscle wasting, proprioceptive deficits, and knuckling of the hind feet. Though the condition is not painful, affected dogs will eventually require assistance walking. As the condition progresses, it moves up the spinal cord and the dog's neurologic deficits mirror the progress, losing fecal and urinary continence and eventually involving the front legs and the brainstem.

🗴 Breeder recommendation

Please note the DM mutation has only been associated with disease signs in some breeds, and this should be considered when making breeding decisions. This disease is autosomal recessive meaning that two copies of the mutation are needed for disease signs to develop. A carrier dog with one copy of the DM mutation can be safely bred with a clear dog with no copies of the DM mutation. About half of the puppies will have one copy (carriers) and half will have no copies of the DM mutation. A dog with two copies of the DM mutation can be safely bred with a clear dog. The resulting puppies will be all carriers with one copy of the DM mutation. Puppies in litters which are expected to contain carriers should be tested prior to breeding. Please note: It is possible that disease signs similar to the ones caused by the DM mutation could develop due to a different genetic or clinical cause.

	Gene	Risk Variant	Copies	Inheritance	Result
Hemophilia A (Discovered in the Boxer)	FVIII	C>G	0	XR	Clear

↔ Information about the genetic condition

Blood coagulation is a complex process. Factor VIII is one of the proteins necessary for the blood coagulation process and a deficiency of this protein causes hemophilia A in an affected dog. Clinical signs of hemophilia A vary depending on the activity of factor VIII in the blood. Specific factor assay may be measured by a reference laboratory. Hematomas or abdominal bleeding without apparent reason may be observed in a severely affected dog. If untreated, the disorder can lead to death caused by bleeding. The condition is usually more severe in large, active dogs. Prior to surgery or invasive procedures, a prothrombin (PT) and partial thromboplastin time (PTT) should be measured. Additional supportive measures, including transfusions, may be necessary.

S Breeder recommendation

This disorder is X-linked recessive, meaning the genetic variant is found on the X chromosome. Given males only have one X chromosome, a single affected copy will increase the risk of being diagnosed with the disorder. Females typically require two copies to be at an elevated risk. Use of dogs with one or two copies of the variant is not recommended for breeding as there is a risk that the resulting litter will contain affected puppies. Please note: It is possible that clinical signs similar to the ones caused by this variant could develop due to a different genetic or clinical cause.

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Traits

Coat Color

	Gene	Variant	Copies	Result
Fawn Copies of this variant will cause dogs to show fawn if they do not have other variant that will mask this effect, such as a plain red, black or white coat.	ASIP	ау	2	Fawn possible
Recessive Black	ASIP	а	0	No effect
Tan Points	ASIP	at	0	No effect
Dominant Black	CBD103	К ^в	0	No effect
Mask One or two copies of the Mask mutation will result in the presence of a dark facial mask covering the muzzle. This mask can cover only the very front of the muzzle, or can extend down to the chest and front legs. Mask can be hidden by other trait variants.	MC1R	Em	2	Dark Muzzle possible
Recessive Red (e1)	MC1R	e ¹	0	No effect
Recessive Red (e2)	MC1R	e ²	0	No effect
Recessive Red (e3)	MC1R	e ³	0	No effect
Widow's Peak (Discovered in Ancient dogs)	MC1R	eA	0	No effect
Widow's Peak (Discovered in the Afghan Hound and Saluki)	MC1R	EG	0	No effect

Color Modification

	Gene	Variant	Copies	Result
Red Intensity	MFSD12	i	0	No effect
Dilution (d1) Linkage test	MLPH	d1	0	No effect
Dilution (d2)	MLPH	d ²	0	No effect
Dilution (d3)	MLPH	d³	0	No effect
Chocolate (basd)	TYRP1	basd	0	No effect

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Color Modification

	Gene	Variant	Copies	Result
Chocolate (bc)	TYRP1	b∘	0	No effect
Chocolate (bd)	TYRP1	bď	0	No effect
Chocolate (bs)	TYRP1	b₅	0	No effect

Coat Patterns

	Gene	Variant	Copies	Result
Piebald	MITF	Sp	0	No effect
Merle	PMEL	Μ	0	No effect
Harlequin	PSMB7	Н	0	No effect
Saddle Tan	RALY	-	2	Saddle possible

One or two copies of the Saddle Tan variant are needed for the "saddle" to be seen. However the Tan Points variant must also be present. The Saddle Tan variant is actually considered to be the wild type, or default, variant.

Coat Length and Curl

	Gene	Variant	Copies	Result
Long Hair (lh1)	FGF5	lh1	0	No effect
Long Hair (lh2)	FGF5	lh ²	0	No effect
Long Hair (lh3)	FGF5	lh³	0	No effect
Long Hair (lh4)	FGF5	lh4	0	No effect
Long Hair (lh5)	FGF5	lh5	0	No effect
Curly Coat	KRT71	С	0	No effect

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Hairlessness

	Gene	Variant	Copies	Result
Hairlessness (Discovered in the Chinese Crested Dog) Linkage test	FOXI3	Hrcc	0	No effect
Hairlessness (Discovered in the American Hairless Terrier)	SGK3	hr ^{aht}	0	No effect
Hairlessness (Discovered in the Scottish Deerhound)	SKG3	hrsd	0	No effect

Shedding

	Gene	Variant	Copies	Result
Reduced Shedding One or two copies of the Reduced Shedding variant is likely to reduce a dog's tendency to shed. Copies of the Furnishings variant, particularly two, also reduce the tendency of a dog to shed.	MC5R	sd	2	Low shedder

More Coat Traits

	Gene	Variant	Copies	Result
Hair Ridge	FGF3, FGF4, FGF19, ORAOV1	R	0	No effect
Furnishings	RSPO2	F	0	No effect
Albino	SLC45A2	Cal	0	No effect

Head Shape

	Gene	Variant	Copies	Result
Short Snout (BMP3 variant)	BMP3	-	0	No effect
Short Snout (SMOC2 variant) Copies of this skull shape variant usually results in a shorter	SMOC2	-	2	Shortened snout likely

snout, whereas dogs with no copies of this variant tend to have a longer snout.

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Eye Color

	Gene	Variant	Copies	Result	
Blue Eyes (Discovered in the Siberian Husky)	ALX4	-	0	No effect	

Ears

	Gene	Variant	Copies	Result
Floppy Ears Dogs with zero copies of this variant are more likely to have permanently upright or prick ears, and fully folded ears are more likely with two copies inherited. Please note however that many genetic variants influence ear carriage. Dogs with some cartilage stiffness to their ears can sometimes raise their ears upright when 'at alert' but will flop down when relaxed.	MSRB3	-	1	Partially floppy ears more likely

Extra Toes

	Gene	Variant	Copies	Result
Hind Dewclaws (Discovered in Asian breeds)	LMBR1	DC-1	0	No effect
Hind Dewclaws (Discovered in Western breeds)	LMBR1	DC-2	0	No effect

More Body Features

	Gene	Variant	Copies	Result
Back Muscle and Bulk	ACSL4	-	0	No effect
High Altitude Adaptation	EPAS1	-	0	No effect
Short Legs (Chondrodysplasia, CDPA)	FGF4	-	0	No effect
Short Tail	T-box	Т	0	Full tail length likely

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Other health conditions tested

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
2,8-dihydroxyadenine (DHA) Urolithiasis	APRT	G>A	0	AR	Clear
Acral Mutilation Syndrome	GDNF	C>T	0	AR	Clear
Acute Respiratory Distress Syndrome	ANLN	C>T	0	AR	Clear
Alaskan Husky Encephalopathy	SLC19A3	G>A	0	AR	Clear
Alexander Disease	GFAP	G>A	0	AR	Clear
Amelogenesis Imperfecta (Discovered in the Italian Greyhound)	ENAM	Deletion	0	AR	Clear
Amelogenesis Imperfecta (Discovered in the Parson Russell Terrier)	ENAM	C>T	0	AR	Clear
Bandera's Neonatal Ataxia	GRM1	Insertion	0	AR	Clear
Benign Familial Juvenile Epilepsy	LGI2	A>T	0	AR	Clear
Canine Leukocyte Adhesion Deficiency (CLAD), type III	FERMT3	Insertion	0	AR	Clear
Canine Multifocal Retinopathy 1	BEST1	C>T	0	AR	Clear
Canine Multifocal Retinopathy 2	BEST1	G>A	0	AR	Clear
Canine Multifocal Retinopathy 3	BEST1	Deletion	0	AR	Clear
Canine Scott Syndrome	ANO6	G>A	0	AR	Clear
Centronuclear Myopathy (Discovered in the Great Dane)	BIN1	A>G	0	AR	Clear
Centronuclear Myopathy (Discovered in the Labrador Retriever)	PTPLA	Insertion	0	AR	Clear
Cerebellar Ataxia	RAB24	A>C	0	AR	Clear
Cerebellar Cortical Degeneration	SNX14	C>T	0	AR	Clear
Cerebellar Hypoplasia	VLDLR	Deletion	0	AR	Clear
Cerebral Dysfunction	SLC6A3	G>A	0	AR	Clear
Chondrodysplasia (Discovered in Norwegian Elkhound and Karelian Bear Dog)	ITGA10	C>T	0	AR	Clear

Optimal Selection

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Cleft Lip & Palate with Syndactyly	ADAMTS20	Deletion	0	AR	Clear
Cleft Palate	DLX6	C>A	0	AR	Clear
Collie Eye Anomaly (CEA)	NHEJ1	Deletion	0	AR	Clear
Complement 3 Deficiency	C3	Deletion	0	AR	Clear
Cone Degeneration (Discovered in the Alaskan Malamute)	CNGB3	Deletion	0	AR	Clear
Cone Degeneration (Discovered in the German Shepherd Dog)	CNGA3	C>T	0	AR	Clear
Cone Degeneration (Discovered in the German Shorthaired Pointer)	CNGB3	G>A	0	AR	Clear
Cone-Rod Dystrophy	NPHP4	Deletion	0	AR	Clear
Cone-Rod Dystrophy 1	PDE6B	Deletion	0	AR	Clear
Cone-Rod Dystrophy 2	IQCB1	Insertion	0	AR	Clear
Congenital Dyshormonogenic Hypothyroidism with Goiter (Discovered in the Shih Tzu)	SLC5A5	G>A	0	AR	Clear
Congenital Hypothyroidism (Discovered in the Tenterfield Terrier)	TPO	C>T	0	AR	Clear
Congenital Hypothyroidism (Discovered in the Toy Fox and Rat Terrier)	TPO	C>T	0	AR	Clear
Congenital Myasthenic Syndrome (Discovered in the Golden Retriever)	COLQ	G>A	0	AR	Clear
Congenital Myasthenic Syndrome (Discovered in the Jack Russell Terrier)	CHRNE	Insertion	0	AR	Clear
Congenital Myasthenic Syndrome (Discovered in the Labrador Retriever)	COLQ	T>C	0	AR	Clear
Congenital Myasthenic Syndrome (Discovered in the Old Danish Pointer)	CHAT	G>A	0	AR	Clear
Congenital Stationary Night Blindness (CSNB)	RPE65	A>T	0	AR	Clear
Craniomandibular Osteopathy (Discovered in Scottish Terrier breeds)	SLC37A2	C>T	0	AD	Clear

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Other health conditions tested

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Cystic Renal Dysplasia and Hepatic Fibrosis	INPP5E	G>A	0	AR	Clear
Cystinuria Type I-A	SLC3A1	C>T	0	AR	Clear
Cystinuria Type II-A	SLC3A1	Deletion	0	AD	Clear
Deafness and Vestibular Dysfunction (DINGS1), (Discovered in Doberman Pinscher)	PTPRQ	Insertion	0	AR	Clear
Demyelinating Neuropathy	SBF2	G>T	0	AR	Clear
Dental Hypomineralization	FAM20C	C>T	0	AR	Clear
Dilated Cardiomyopathy (Discovered in the Schnauzer)	RBM20	Deletion	0	AR	Clear
Dominant Progressive Retinal Atrophy	RHO	C>G	0	AD	Clear
Dystrophic Epidermolysis Bullosa (Discovered in the Central Asian Ovcharka)	COL7A1	C>T	0	AR	Clear
Dystrophic Epidermolysis Bullosa (Discovered in the Golden Retriever)	COL7A1	C>T	0	AR	Clear
Early Adult Onset Deafness For Border Collies only (Linkage test)	Intergenic	Insertion	0	AR	Clear
Early Retinal Degeneration (Discovered in the Norwegian Elkhound)	STK38L	Insertion	0	AR	Clear
Early-Onset Progressive Polyneuropathy (Discovered in the Alaskan Malamute)	NDRG1	G>T	0	AR	Clear
Early-Onset Progressive Polyneuropathy (Discovered in the Greyhound)	NDRG1	Deletion	0	AR	Clear
Early-Onset Progressive Retinal Atrophy (Discovered in the Portuguese Water Dog)	CCDC66	Insertion	0	AR	Clear
Epidermolytic Hyperkeratosis	KRT10	G>T	0	AR	Clear
Episodic Falling Syndrome	BCAN	Insertion	0	AR	Clear
Exercise-Induced Collapse	DNM1	G>T	0	AR	Clear
Factor VII Deficiency	F7	G>A	0	AR	Clear

Optimal Selection

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Other health conditions tested

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Factor XI Deficiency	FXI	Insertion	0	AD	Clear
Fanconi Syndrome	FAN1	Deletion	0	AR	Clear
Fetal Onset Neuroaxonal Dystrophy	MFN2	G>C	0	AR	Clear
Focal Non-Epidermolytic Palmoplantar Keratoderma	KRT16	G>C	0	AR	Clear
Generalized Progressive Retinal Atrophy (Discovered in the Schapendoes)	CCDC66	Insertion	0	AR	Clear
Glanzmann Thrombasthenia Type I (Discovered in Great Pyrenees)	ITGA2B	C>G	0	AR	Clear
Glanzmann Thrombasthenia Type I (Discovered in mixed breed dogs)	ITGA2B	C>T	0	AR	Clear
Globoid Cell Leukodystrophy (Discovered in Terriers)	GALC	A>C	0	AR	Clear
Globoid Cell Leukodystrophy (Discovered in the Irish Setter)	GALC	A>T	0	AR	Clear
Glycogen Storage Disease Type Ia (Discovered in the Maltese)	G6PC	G>C	0	AR	Clear
Glycogen Storage Disease Type IIIa, (GSD IIIa)	AGL	Deletion	0	AR	Clear
GM1 Gangliosidosis (Discovered in the Portuguese Water Dog)	GLB1	G>A	0	AR	Clear
GM1 Gangliosidosis (Discovered in the Shiba)	GLB1	Deletion	0	AR	Clear
GM2 Gangliosidosis (Discovered in the Japanese Chin)	HEXA	G>A	0	AR	Clear
GM2 Gangliosidosis (Discovered in the Toy Poodle)	HEXB	Deletion	0	AR	Clear
Hemophilia A (Discovered in Old English Sheepdog)	FVIII	C>T	0	XR	Clear
Hemophilia A (Discovered in the German Shepherd Dog - Variant 1)	FVIII	G>A	0	XR	Clear
Hemophilia A (Discovered in the German Shepherd Dog - Variant 2)	FVIII	G>A	0	XR	Clear
Hemophilia A (Discovered in the Havanese)	FVIII	Insertion	0	XR	Clear

Optimal Selection

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Other health conditions tested

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Hemophilia B	FIX	G>A	0	XR	Clear
Hemophilia B (Discovered in the Airedale Terrier)	FIX	Insertion	0	XR	Clear
Hemophilia B (Discovered in the Lhasa Apso)	FIX	Deletion	0	XR	Clear
Hereditary Ataxia (Discovered in the Norwegian Buhund)	KCNIP4	T>C	0	AR	Clear
Hereditary Elliptocytosis	SPTB	C>T	0	AD	Clear
Hereditary Footpad Hyperkeratosis	FAM83G	G>C	0	AR	Clear
Hereditary Nasal Parakeratosis (Discovered in the Greyhound)	SUV39H2	Deletion	0	AR	Clear
Hereditary Nasal Parakeratosis (Discovered in the Labrador Retriever)	SUV39H2	A>C	0	AR	Clear
Hereditary Vitamin D-Resistant Rickets Type II	VDR	Deletion	0	AR	Clear
Hyperuricosuria	SLC2A9	G>T	0	AR	Clear
Hypocatalasia	CAT	G>A	0	AR	Clear
Hypomyelination	FNIP2	Deletion	0	AR	Clear
Hypophosphatasia	Confidential	-	0	AR	Clear
Ichthyosis (Discovered in the American Bulldog)	NIPAL4	Deletion	0	AR	Clear
Ichthyosis (Discovered in the Great Dane)	SLC27A4	G>A	0	AR	Clear
Intestinal Cobalamin Malabsorption (Discovered in the Beagle)	CUBN	Deletion	0	AR	Clear
Intestinal Cobalamin Malabsorption (Discovered in the Border Collie)	CUBN	Deletion	0	AR	Clear
Intestinal Cobalamin Malabsorption (Discovered in the Komondor)	CUBN	G>A	0	AR	Clear
Juvenile Encephalopathy (Discovered in the Parson Russell Terrier)	Confidential	-	0	AR	Clear
Juvenile Laryngeal Paralysis and Polyneuropathy	RAB3GAP1	Deletion	0	AR	Clear

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Other health conditions tested

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Juvenile Myoclonic Epilepsy	DIRAS1	Deletion	0	AR	Clear
L-2-Hydroxyglutaric aciduria (Discovered in the Staffordshire Bull Terrier)	L2HGDH	T>C	0	AR	Clear
L-2-Hydroxyglutaric Aciduria (Discovered in the West Highland White Terrier)	Confidential	-	0	AR	Clear
Lagotto Storage Disease	ATG4D	G>A	0	AR	Clear
Lamellar Ichthyosis	TGM1	Insertion	0	AR	Clear
Lethal Acrodermatitis (Discovered in the Bull Terrier)	MKLN1	A>C	0	AR	Clear
Ligneous Membranitis	PLG	T>A	0	AR	Clear
Lung Developmental Disease (Discovered in the Airedale Terrier)	LAMP3	C>T	0	AR	Clear
Macrothrombocytopenia (Discovered in Norfolk and Cairn Terrier)	TUBB1	G>A	0	AR	Clear
May-Hegglin Anomaly	MYH9	G>A	0	AD	Clear
MDR1 Medication Sensitivity	MDR1/ABCB1	Deletion	0	AD	Clear
Microphthalmia (Discovered in the Soft-Coated Wheaten Terrier)	RBP4	Deletion	0	AR	Clear
Mucopolysaccharidosis Type IIIA (Discovered in the Dachshund)	SGSH	C>A	0	AR	Clear
Mucopolysaccharidosis Type IIIA (Discovered in the New Zealand Huntaway)	SGSH	Insertion	0	AR	Clear
Mucopolysaccharidosis Type VII (Discovered in the Brazilian Terrier)	GUSB	C>T	0	AR	Clear
Mucopolysaccharidosis Type VII (Discovered in the German Shepherd Dog)	GUSB	G>A	0	AR	Clear
Muscular Dystrophy (Discovered in the Cavalier King Charles Spaniel)	Dystrophin	G>T	0	XR	Clear
Muscular Dystrophy (Discovered in the Golden Retriever)	Dystrophin	A>G	0	XR	Clear
Muscular Dystrophy (Discovered in the Landseer)	COL6A1	G>T	0	AR	Clear

Optimal Selection

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Muscular Dystrophy (Discovered in the Norfolk Terrier)	Dystrophin	Deletion	0	XR	Clear
Muscular Hypertrophy (Double Muscling)	MSTN	T>A	0	AR	Clear
Musladin-Lueke Syndrome	ADAMTSL2	C>T	0	AR	Clear
Myeloperoxidase Deficiency	MOP	C>T	0	AR	Clear
Myotonia Congenita (Discovered in Australian Cattle Dog)	CLCN1	Insertion	0	AR	Clear
Myotonia Congenita (Discovered in the Labrador Retriever)	CLCN1	T>A	0	AR	Clear
Myotonia Congenita (Discovered in the Miniature Schnauzer)	CLCN1	C>T	0	AR	Clear
Myotubular Myopathy	MTM1	A>C	0	XR	Clear
Narcolepsy (Discovered in the Dachshund)	HCRTR2	G>A	0	AR	Clear
Narcolepsy (Discovered in the Labrador Retriever)	HCRTR2	G>A	0	AR	Clear
Nemaline Myopathy	NEB	C>A	0	AR	Clear
Neonatal Cerebellar Cortical Degeneration	SPTBN2	Deletion	0	AR	Clear
Neonatal Encephalopathy with Seizures	ATF2	T>G	0	AR	Clear
Neuroaxonal Dystrophy (Discovered in Spanish Water Dog)	TECPR2	C>T	0	AR	Clear
Neuroaxonal Dystrophy (Discovered in the Papillon)	PLA2G6	G>A	0	AR	Clear
Neuroaxonal Dystrophy (Discovered in the Rottweiler)	VPS11	A>G	0	AR	Clear
Neuronal Ceroid Lipofuscinosis 1	PPT1	Insertion	0	AR	Clear
Neuronal Ceroid Lipofuscinosis 12 (Discovered in the Australian Cattle Dog)	ATP13A2	C>T	0	AR	Clear
Neuronal Ceroid Lipofuscinosis 7	MFSD8	Deletion	0	AR	Clear
Neuronal Ceroid Lipofuscinosis 8 (Discovered in the Alpine Dachsbracke)	CLN8	Deletion	0	AR	Clear

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Neuronal Ceroid Lipofuscinosis 8 (Discovered in the Australian Shepherd)	CLN8	G>A	0	AR	Clear
Neuronal Ceroid Lipofuscinosis 8 (Discovered in the English Setter)	CLN8	T>C	0	AR	Clear
Neuronal Ceroid Lipofuscinosis 8 (Discovered in the Saluki)	CLN8	Insertion	0	AR	Clear
Obesity risk (POMC)	POMC	Deletion	0	AD	Clear
Osteochondrodysplasia	SLC13A1	Deletion	0	AR	Clear
Osteochondromatosis (Discovered in the American Staffordshire Terrier)	EXT2	C>A	0	AR	Clear
Osteogenesis Imperfecta (Discovered in the Beagle)	COL1A2	C>T	0	AD	Clear
Osteogenesis Imperfecta (Discovered in the Dachshund)	SERPINH1	T>C	0	AR	Clear
P2RY12-associated Bleeding Disorder	P2RY12	Deletion	0	AR	Clear
Paroxysmal Dyskinesia	PIGN	C>T	0	AR	Clear
Persistent Müllerian Duct Syndrome	AMHR2	C>T	0	AR	Clear
Phosphofructokinase Deficiency	PFKM	G>A	0	AR	Clear
Polycystic Kidney Disease	PKD1	G>A	0	AD	Clear
Prekallikrein Deficiency	KLKB1	T>A	0	AR	Clear
Primary Ciliary Dyskinesia	CCDC39	C>T	0	AR	Clear
Primary Ciliary Dyskinesia (Discovered in the Alaskan Malamute)	NME5	Deletion	0	AR	Clear
Primary Lens Luxation	ADAMTS17	G>A	0	AR	Clear
Primary Open Angle Glaucoma (Discovered in Basset Fauve de Bretagne)	ADAMTS17	G>A	0	AR	Clear
Primary Open Angle Glaucoma (Discovered in Petit Basset Griffon Vendeen)	ADAMTS17	Insertion	0	AR	Clear

Optimal Selection

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Other health conditions tested

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Primary Open Angle Glaucoma and Lens Luxation (Discovered in Chinese Shar-Pei)	ADAMTS17	Deletion	0	AR	Clear
Progressive Early-Onset Cerebellar Ataxia	SEL1L	T>C	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Basenji)	SAG	T>C	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Golden Retriever - GR-PRA1 variant)	SLC4A3	Insertion	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Lhasa Apso)	IMPG2	Insertion	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Papillon and Phalène)	CNGB1	Deletion	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Shetland Sheepdog - BBS2 variant)	Confidential	-	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Shetland Sheepdog - CNGA1 variant)	CNGA1	Deletion	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Swedish Vallhund)	MERTK	Insertion	0	AR	Clear
Progressive Retinal Atrophy 1 (Discovered in the Italian Greyhound)	Confidential	-	0	AR	Clear
Progressive Retinal Atrophy Type III	FAM161A	Insertion	0	AR	Clear
Progressive Rod Cone Degeneration (prcd-PRA)	PRCD	G>A	0	AR	Clear
Protein Losing Nephropathy	NPHS1	G>A	0	AR	Clear
Pyruvate Dehydrogenase Phosphatase 1 Deficiency	PDP1	C>T	0	AR	Clear
Pyruvate Kinase Deficiency (Discovered in the Basenji)	PKLR	Deletion	0	AR	Clear
Pyruvate Kinase Deficiency (Discovered in the Beagle)	PKLR	G>A	0	AR	Clear
Pyruvate Kinase Deficiency (Discovered in the Pug)	PKLR	T>C	0	AR	Clear
Pyruvate Kinase Deficiency (Discovered in the West Highland White Terrier)	PKLR	Insertion	0	AR	Clear
QT Syndrome	KCNQ1	C>A	0	AD	Clear

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Renal Cystadenocarcinoma and Nodular Dermatofibrosis	FLCN	A>G	0	AD	Clear
Rod-Cone Dysplasia 1	PDE6B	G>A	0	AR	Clear
Rod-Cone Dysplasia 1a	PDE6B	Insertion	0	AR	Clear
Rod-Cone Dysplasia 3	PDE6A	Deletion	0	AR	Clear
Sensory Ataxic Neuropathy	tRNATyr	Deletion	0	MT	Clear
Sensory Neuropathy	FAM134B	Insertion	0	AR	Clear
Severe Combined Immunodeficiency (Discovered in Frisian Water Dogs)	RAG1	G>T	0	AR	Clear
Severe Combined Immunodeficiency (Discovered in Russell Terriers)	PRKDC	G>T	0	AR	Clear
Shaking Puppy Syndrome (Discovered in the Border Terrier)	Confidential	-	0	AR	Clear
Skeletal Dysplasia 2	COL11A2	G>C	0	AR	Clear
Spinocerebellar Ataxia (Late-Onset Ataxia)	CAPN1	G>A	0	AR	Clear
Spinocerebellar Ataxia with Myokymia and/or Seizures	KCNJ10	C>G	0	AR	Clear
Spondylocostal Dysostosis	HES7	Deletion	0	AR	Clear
Spongy Degeneration with Cerebellar Ataxia (Discovered in Belgian Malinois - SDCA1)	KCNJ10	T>C	0	AR	Clear
Spongy Degeneration with Cerebellar Ataxia (Discovered in Belgian Malinois - SDCA2)	ATP1B2	Insertion	0	AR	Clear
Stargardt Disease (Discovered in the Labrador Retriever)	ABCA4	Insertion	0	AR	Clear
Startle Disease (Discovered in Irish Wolfhounds)	SLC6A5	G>T	0	AR	Clear
Trapped Neutrophil Syndrome	VPS13B	Deletion	0	AR	Clear
Van den Ende-Gupta Syndrome	SCARF2	Deletion	0	AR	Clear
von Willebrand's Disease, type 1	VWF	G>A	0	AD	Clear

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
von Willebrand's Disease, type 2	VWF	T>G	0	AR	Clear
von Willebrand's Disease, type 3 (Discovered in the Kooiker Hound)	VWF	G>A	0	AR	Clear
von Willebrand's Disease, type 3 (Discovered in the Scottish Terrier)	VWF	Deletion	0	AR	Clear
von Willebrand's Disease, type 3 (Discovered in the Shetland Sheepdog)	VWF	Deletion	0	AR	Clear
X-Linked Ectodermal Dysplasia	EDA	G>A	0	XR	Clear
X-Linked Hereditary Nephropathy (Discovered in the Navasota Dog)	COL4A5	Deletion	0	XR	Clear
X-Linked Hereditary Nephropathy (Discovered in the Samoyed)	COL4A5	G>T	0	XR	Clear
X-Linked Myotubular Myopathy	MTM1	C>A	0	XR	Clear
X-Linked Progressive Retinal Atrophy 1	RPGR	Deletion	0	XR	Clear
X-Linked Progressive Retinal Atrophy 2	RPGR	Deletion	0	XR	Clear
X-Linked Severe Combined Immunodeficiency (Discovered in the Basset Hound)	IL2RG	Deletion	0	XR	Clear
X-Linked Severe Combined Immunodeficiency (Discovered in the Cardigan Welsh Corgi)	IL2RG	Insertion	0	XR	Clear
X-Linked Tremors	PLP1	A>C	0	XR	Clear
Xanthinuria (Discovered in a mixed breed dog)	Confidential	-	0	AR	Clear
Xanthinuria (Discovered in the Cavalier King Charles Spaniel)	Confidential	-	0	AR	Clear
Xanthinuria (Discovered in the Toy Manchester Terrier)	Confidential	-	0	AR	Clear

Registration number: JR 701588 Nb Test date: 2022-06-07 ID kit: DLGRCSC **Optimal Select**

Glossary of genetic terms

Test result definitions

At Risk: Based on the disorder's mode of inheritance, the dog inherited a number of genetic variant(s) which increases the dog's risk of being diagnosed with the associated disorder.

Carrier: The dog inherited one copy of a genetic variant when two copies are usually necessary to increase the dog's risk of being diagnosed with the associated disorder. While carriers are usually not at risk of clinical expression of the disorder, carriers of some complex variants may be associated with a low risk of developing the disorder.

Clear: The dog did not inherit the genetic variant(s) associated with the disorder and will not be at elevated risk of being diagnosed with the disorder due to this genotype. However, similar clinical signs could develop from different genetic or clinical causes.

Inconclusive: An inconclusive result indicates a confident call could not be made based on the data for that genetic variant. Health testing is performed in replicates, and on occasion the outcomes do not agree. This may occur due to an unusual sequence of DNA in the region tested, multiple cell genotypes present due to chimerism or acquired mutations, or due to quality of the DNA sample.

Inheritance mode definitions

Autosomal Recessive (AR): For autosomal recessive disorders, dogs with two copies of the genetic variant are at risk of developing the associated disorder. Dogs with one copy of the variant are considered carriers and are usually not at risk of developing the disorder. However, carriers of some complex variants grouped in this category may be associated with a low risk of developing the disorder. Dogs with one or two copies may pass the disorder-associated variant to their puppies if bred.

Autosomal Dominant (AD): For autosomal dominant disorders, dogs with one or two copies of the genetic variant are at risk of developing the associated disorder. Inheriting two copies of the variant may increase the risk of development of the disorder or cause the condition to be more severe. These dogs may pass the disorder-associated variant to their puppies if bred.

X-linked Recessive (XR): For X-linked recessive disorders, the genetic variant is found on the X chromosome. Female dogs must inherit two copies of the variant to be at risk of developing the condition, whereas male dogs only need one copy to be at risk. Males and females with any copies of the variant may pass the disorder-associated variant to their puppies if bred.

X-linked Dominant (XD): For X-linked dominant disorders, the genetic variant is found on the X chromosome. Both male and female dogs with one copy of the variant are at risk of developing the disorder. Females inheriting two copies of the variant may be at higher risk or show a more severe form of the disorder than with one copy. Males and females with any copies of the variant may pass the disorder-associated variant to their puppies if bred.

Mitochondrial (MT): Unlike the two copies of genomic DNA held in the nucleus, there are thousands of mitochondria in each cell of the body, and each holds its own mitochondrial DNA (mtDNA). Mitochondria are called the "powerhouses" of the cell. For a dog to be at risk for a mitochondrial disorder, it must inherit a certain ratio of mtDNA with the associated variant compared to normal mtDNA. mtDNA is inherited only from the mother.